Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Immun ; 91(12): e0038423, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37975682

RESUMEN

Candida albicans is a lifelong member of the mycobiome causing mucosal candidiasis and life-threatening, systemic, and intra-abdominal disease in immunocompromised and transplant patients. Despite the clinical importance of intra-abdominal candidiasis with mortality rates between 40% and 70%, the contribution of fungal virulence factors and host immune responses to disease has not been extensively studied. Secretion of the quorum-sensing molecule, farnesol, acts as a virulence factor for C. albicans during systemic infection, while inducing local, protective innate immune responses in oral models of infection. Previously, we reported that farnesol recruits macrophages to the peritoneal cavity in mice, suggesting a role for farnesol in innate immune responses. Here, we expand on our initial findings, showing that farnesol profoundly alters the peritoneal cavity microenvironment promoting innate inflammation. Intra-peritoneal injection of farnesol stimulates rapid local death of resident peritoneal cells followed by recruitment of neutrophils and inflammatory macrophages into the peritoneal cavity and peritoneal mesothelium associated with an early increase in chemokines followed by proinflammatory cytokines. These rapid inflammatory responses to farnesol significantly increase morbidity and mortality of mice with intra-abdominal candidiasis associated with increased formation of peritoneal adhesions, despite similar rates of fungal clearance from the peritoneal cavity and retro-peritoneal organs. C. albicans ddp3Δ/ddp3Δ knockout and reconstituted strains recapitulate these findings. This indicates that farnesol may be detrimental to the host during intra-abdominal infections. Importantly, our results highlight a need to understand how C. albicans virulence factors modulate the host immune response within the peritoneum, an exceedingly common site of Candida infection.


Asunto(s)
Candidiasis , Infecciones Intraabdominales , Humanos , Animales , Ratones , Candida albicans , Farnesol/farmacología , Cavidad Peritoneal/patología , Candidiasis/microbiología , Factores de Virulencia
2.
Biotechnol Bioeng ; 118(3): 1224-1243, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33289090

RESUMEN

The investigation of new adjuvants is essential for the development of efficacious vaccines. Chitosan (CS), a derivative of chitin, has been shown to act as an adjuvant, improving vaccine-induced immune responses. However, the effect of CS molecular weight (MW) on this adjuvanticity has not been investigated, despite MW having been shown to impact CS biological properties. Here, two MW variants of CS were investigated for their ability to enhance vaccine-elicited immune responses in vitro and in vivo, using a single-dose influenza A virus (IAV) protein vaccine model. Both low-molecular-weight (LMW) and high-molecular-weight (HMW) CS-induced interferon regulatory factor pathway signaling, antigen-presenting cell activation, and cytokine messenger RNA (mRNA) production, with LMW inducing higher mRNA levels at 24 h and HMW elevating mRNA responses at 48 h. LMW and HMW CS also induced adaptive immune responses after vaccination, indicated by enhanced immunoglobulin G production in mice receiving LMW CS and increased CD4 interleukin 4 (IL-4) and IL-2 production in mice receiving HMW CS. Importantly, both LMW and HMW CS adjuvantation reduced morbidity following homologous IAV challenge. Taken together, these results support that LMW and HMW CS can act as adjuvants, although this protection may be mediated through distinct mechanisms based on CS MW.


Asunto(s)
Adyuvantes Inmunológicos , Quitosano , Virus de la Influenza A/inmunología , Vacunas contra la Influenza , Proteínas Virales , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Animales , Quitosano/química , Quitosano/farmacología , Femenino , Vacunas contra la Influenza/química , Vacunas contra la Influenza/farmacología , Ratones , Ratones Endogámicos BALB C , Peso Molecular , Proteínas Virales/química , Proteínas Virales/farmacología
3.
Cell Immunol ; 355: 104149, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32619809

RESUMEN

Toll-like receptor (TLR)4 and TLR9 agonists, MPL and CpG, are used as adjuvants in vaccines and have been investigated for their combined potential. However, how these two combined agonists regulate transcriptional changes in innate immune cells and cells at the site of vaccination has not been thoroughly investigated. Here, we utilized transcriptomics to investigate how CpG, MPL, and CpG + MPL impact gene expression in dendritic cells (DC) in vitro. Principal component analysis of transcriptional changes after single and combined treatment indicated that CpG, MPL, and CpG + MPL caused distinct gene signatures. CpG + MPL induced antiviral gene expression and activated the interferon regulatory factor pathway. In vitro changes were associated with lower in vivo morbidity upon viral challenge, elevated systemic cytokine protein production, local cytokine mRNA expression, and increased migratory monocyte derived DC populations in the draining lymph node following vaccination with CpG + MPL. This report suggests that CpG + MPL enhances transcription of antiviral and inflammatory genes and increases DC migration.


Asunto(s)
Células Dendríticas/efectos de los fármacos , Lípido A/análogos & derivados , Oligodesoxirribonucleótidos/farmacología , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 9/agonistas , Animales , Islas de CpG , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Expresión Génica/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Lípido A/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Vacunas/inmunología , Vacunas/metabolismo
4.
Cell Immunol ; 310: 141-149, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27641636

RESUMEN

Interferon Regulatory Factor (IRF)3 is a crucial transcription factor during innate immune responses. Here we show IRF3 also has a role in adaptive T cell immune responses. Expression of IFN-γ, IL-17, and Granzyme B (GrB) during in vitro T cell responses was impaired when either dendritic cells (DCs) or T cells were derived from IRF3KO mice. Unexpectedly, IRF3-dependent NK-activating molecule (INAM), which is an NK cell activating factor of the DC innate immune response, was induced during the T cell response. Additionally, supernatants from responding T cells induced ISG54 in the RAW264.7 macrophage cell line in an IRF3 dependent manner. Moreover, addition of anti-IFN-γ prevented supernatant induction of ISG54 and recombinant IFN-γ stimulated ISG54 expression. Thus, IRF3 in APCs and T cells is required for optimal T-cell effector function and the ability of T cells to influence innate immune function of APCs.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Dendríticas/inmunología , Factor 3 Regulador del Interferón/metabolismo , Macrófagos/inmunología , Linfocitos T/fisiología , Inmunidad Adaptativa , Animales , Femenino , Factor 3 Regulador del Interferón/genética , Interferón gamma/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células RAW 264.7 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Front Immunol ; 7: 93, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27014272

RESUMEN

CD4 T cells that recognize peptide antigen in the context of class II MHC can differentiate into various subsets that are characterized by their helper functions. However, increasing evidence indicates that CD4 cells with direct cytolytic activity (CD4 CTL) play a role in chronic as well as acute infections, such as influenza A virus (IAV) infection. In the last couple of decades, techniques to measure the frequency and activity of these cytolytic cells has demonstrated their abundance in infections, such as human immunodeficiency virus, mouse pox, murine gamma herpes virus, cytomegalovirus, Epstein-Barr virus, and influenza among others. We now appreciate a greater role for CD4 CTL as direct effectors in viral infections and antitumor immunity through their ability to acquire perforin-mediated cytolytic activity and contribution to lysis of virally infected targets or tumors. As early as the 1980s, CD4 T cell clones with cytolytic potential were identified after influenza virus infection, yet much of this early work was dependent on in vitro culture and little was known about the physiological relevance of CD4 CTL. Here, we discuss the direct role CD4 CTL play in protection against lethal IAV infection and the factors that drive the generation of perforin-mediated lytic activity in CD4 cells in vivo during IAV infection. While focusing on CD4 CTL generated during IAV infection, we pull comparisons from the literature in other antiviral and antitumor systems. Further, we highlight what is currently known about CD4 CTL secondary and memory responses, as well as vaccination strategies to induce these potent killer cells that provide an extra layer of cell-mediated immune protection against heterosubtypic IAV infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...